已知:在三角形ABC中,AD垂直于BC,垂足点为D,AD的平方等于BD乘DC,求证:三角形ABC是直角三角形
问题描述:
已知:在三角形ABC中,AD垂直于BC,垂足点为D,AD的平方等于BD乘DC,求证:三角形ABC是直角三角形
用勾股定理,
答
由于AD⊥BC,由勾股定理
AB²=AD²+BD²
AC²=AD²+DC²
则:
AB²+AC²=2AD²+BD²+DC²
将AD²=BDxDC代入,则
AB²+AC²=2BDxDC+BD²+DC²=(BD+DC)²=BC²
也就是
AB²+AC²=BC²
由勾股定理可以得出:
△ABC为直角三角形