求sin220°+cos280°+3sin20°cos80°的值.

问题描述:

求sin220°+cos280°+

3
sin20°cos80°的值.

原式=sin220°+sin210°+

3
sin20°cos(60°+20°)
=sin220°+
1
2
(1-cos20°)+
3
2
sin20°cos20°-
3
2
sin220°,
=
1
2
(1-cos20°)+
3
4
sin40°-
1-cos40°
4

=
1
4
-
1
2
cos20°+
1
2
3
2
sin40°+
1
2
cos40°)
=
1
4
-
1
2
cos20°+
1
2
sin70°
=
1
4

故答案为
1
4