自选题:若P为△ABC所在平面上一点,且∠APB=∠BPC=∠CPA=120°,则点P叫做△ABC的费马点.(1)若点P为锐角△ABC的费马点,且∠ABC=60°,PA=3,PC=4,则PB的值为 _ ;(2)如图,在锐角△ABC外侧作

问题描述:

自选题:若P为△ABC所在平面上一点,且∠APB=∠BPC=∠CPA=120°,则点P叫做△ABC的费马点.
(1)若点P为锐角△ABC的费马点,且∠ABC=60°,PA=3,PC=4,则PB的值为 ___ ;
(2)如图,在锐角△ABC外侧作等边△ACB′连接BB′.求证:BB′过△ABC的费马点P,且BB′=PA+PB+PC.

(1)∵∠PAB+∠PBA=180°-∠APB=60°,∠PBC+∠PBA=∠ABC=60°,∴∠PAB=∠PBC,又∵∠APB=∠BPC=120°,∴△ABP∽△BCP,∴PAPB=PBPC,∴PB2=PA•PC=12,∴PB=23;(2)证明:在BB'上取点P,使∠BPC=120°.连接AP...