若点P为锐角三角形ABC的费马点,且角ABC=60度 ,PA=3,PC=4,则PB的值为________;
问题描述:
若点P为锐角三角形ABC的费马点,且角ABC=60度 ,PA=3,PC=4,则PB的值为________;
答
2√3
以B为顶点,往BC边外旋转BPC 60度得到BDE,根据费马点的定义,以及旋转,有:
1) ∠APB=120度
2) ∠BDE=∠BPC=120度
3) A、P、D、E四点共线
4) △BPD是等边三角形
5) ∠CBE=60度
因为∠ABC=60度,所以
6) ∠ABE=∠ABC + ∠CBE=120度
根据4)、6)有:
7) ∠ABP + ∠DBE=60度
因为∠ABP + ∠BAP=60度,所以
8) ∠DBE=∠BAP
由1)、2)、8)知道△APB相似于△BDE,于是AP/BP=BD/DE=BP/CP
从而BP^2=AP*CP,即BP=2√3