若z为虚数有z^2=共轭z,则(z^2+1)^2+z+1等于?
问题描述:
若z为虚数有z^2=共轭z,则(z^2+1)^2+z+1等于?
答
z^2=共轭z
z=a+bi,a,b∈R,b≠0
(a+bi)²=a-bi
a^2-b^2+2abi=a-bi
a^2-b^2=a (1)且 2ab=-b (2)
(2)==>b=0(舍去)或a=-1/2
将a=-1/2代入(1)得b^2=3/4
b=±√3/2
∴z=-1/2±(√3/2) i
(z^2+1)^2+z+1
=(^z+1)^2+z+1
z=-1/2+(√3/2) i
原式=(1/2-√3/2i)^2+1/2+(√3/2) i
= 1/4-√3/2i-3/4+1/2+(√3/2) i
=0
z=-1/2+(√3/2) i
原式=(1/2+√3/2i)^2+1/2-(√3/2) i
= 1/4+√3/2i-3/4+1/2-(√3/2) i
=0
∴(z^2+1)^2+z+1=0