已知二次函数f(x)=ax^2+bx+1(a>0) 设方程f(x)=x的两个实数根为x1和x2
问题描述:
已知二次函数f(x)=ax^2+bx+1(a>0) 设方程f(x)=x的两个实数根为x1和x2
(1) 如果 a=2 且x1
答
f(x) = 2x^2 + bx + 1 = x,
2x^2 + (b-1)x + 1 = 0.
(b-1)^2 - 8 > 0,
(b-1)^2 > 2*2^(1/2)
b > 1 + 2^(3/2)
或
b 设g(x) = f(x) - x = 2x^2 + (b-1)x + 1
曲线g(x)是开口向上的抛物线.
(1)
g(x1) = 0 > g(2) 8 + 2(b-1) + 1b -29/4
-29/4 1 + 2^(3/2)或b 综合,有
-29/4 (2)
|x2 - x1| 4 > (x2 - x1)^2 = (x2 + x1)^2 - 4x2x1 = (b/2)^2 - 4(1/2) = b^2/4 - 2,
b^2 |b| -2*6^(1/2) -2 -2 = 0 - 2 -2 0 0 -29/4
-29/4 又,b > 1 + 2^(3/2)或b 综合,有
1 + 2^(3/2)