设A是数集 满足a∈A 则有1/(1-a)∈A 1..若2∈a,证明A中至少含有 3个元素 2.证明:若a∈A 则1-(1/a)∈A

问题描述:

设A是数集 满足a∈A 则有1/(1-a)∈A 1..若2∈a,证明A中至少含有 3个元素 2.证明:若a∈A 则1-(1/a)∈A

若a∈A,则1/(1-a)∈A,则1/[1-1/(1-a)]=(a-1)/a∈A,则1/[1-(a-1)/a]=a∈A,所以当上边这3个表达式互不相等时此集合含有且只含有3个元素,分别为:a,1/(1-a),(a-1)/a,证明:a=2时,3个元素为2,-1,1/2,所以有3个元素,得证!...