已知抛物线y2=2px(p>0),过其焦点且斜率为1的直线交抛物线于A,B两点,若线段AB的中点的纵坐标为2,则该抛物线的标准方程为( ) A.y2=-4x B.y2=4x C.x2=4y D.x2=-4y
问题描述:
已知抛物线y2=2px(p>0),过其焦点且斜率为1的直线交抛物线于A,B两点,若线段AB的中点的纵坐标为2,则该抛物线的标准方程为( )
A. y2=-4x
B. y2=4x
C. x2=4y
D. x2=-4y
答
设A(x1,y1)、B(x2,y2),则有y12=2px1,y22=2px2,
两式相减得:(y1-y2)(y1+y2)=2p(x1-x2),
又因为直线的斜率为1,所以
=1,
y1−y2
x1−x2
所以有y1+y2=2p,又线段AB的中点的纵坐标为2,
即y1+y2=4,所以p=2,
所以抛物线的标准方程为y2=4x.
故选B.