定积分问题:下限0上限π ∫ (sinx)的m次方 dx为什么等于2 ∫下限0上限π/2 (sinx)次方
问题描述:
定积分问题:下限0上限π ∫ (sinx)的m次方 dx为什么等于2 ∫下限0上限π/2 (sinx)次方
如何证明?
答
∫[0→π] (sinx)^m dx
=∫[0→π/2] (sinx)^m dx + ∫[π/2→π] (sinx)^m dx
后一部分做变量替换,令x=π-u,则dx=-du,u:π/2→0
=∫[0→π/2] (sinx)^m dx - ∫[π/2→0] (sin(π-u))^m du
=∫[0→π/2] (sinx)^m dx - ∫[π/2→0] (sinu)^m du
=∫[0→π/2] (sinx)^m dx + ∫[0→π/2] (sinu)^m du
积分变量可随便换字母
=2∫[0→π/2] (sinx)^m dx
希望可以帮到你,如果解决了问题,请点下面的"选为满意回答"按钮,