若实数a,b满足ab-4a-b+1=0(a>1),则(a+1)(b+2)的最小值为_.

问题描述:

若实数a,b满足ab-4a-b+1=0(a>1),则(a+1)(b+2)的最小值为______.

∵ab-4a-b+1═0
∴b=

4a−1
a−1
=4+
3
a−1

∴(a+1)(b+2)=6a+
6a
a−1
+3
=6a+
6
a−1
+9
=6(a-1)+
6
a−1
+15
≥27(当且仅当a-1=
1
a−1
即a=2时等号成立)
故答案为27.