求∫cosx/sin^2xdx; ∫sec5xdx; ∫1/(√x+3√x)dx; ∫[√﹙x-1﹚/x]dx; ∫sin√xdx;

问题描述:

求∫cosx/sin^2xdx; ∫sec5xdx; ∫1/(√x+3√x)dx; ∫[√﹙x-1﹚/x]dx; ∫sin√xdx;

1)∫sec5xdx=1/5∫sec5xd5x=1/5ln|sec5x+tan5x|+c
2)∫sin√xdx;
令√x=t,x=t^2,dx=2tdt,
∫sin√xdx= 2∫tsintdt = -2∫tdcost = -2(tcost-∫costdt) = -2(tcost-sint)+c=-2(√xcos√x-sin√x)+c
3)∫[√﹙x-1﹚/x]dx
令√﹙x-1﹚=t, x=t^2+1, dx=2tdt, ∫[√﹙x-1﹚/x]dx =∫t*2t/(t^2+1)*dt=2∫[1-1/(t^2+1)]dt
= 2(t-arctant)+c = 2[√﹙x-1﹚-arctan√﹙x-1﹚]+c

1、∫cosxdx/sin²x=∫cscxcotxdx=-cscx + c2、∫sec5xdx=(1/5)∫sec5xd(5x)=(1/5)ln|sec5x+tan5x| + c3、∫dx/[x^(1/2)+x^(1/3)],u=x^1/6,x=u^6,dx=6u^5du= 6∫u^5du/(u³+u²)= 6∫u³du/(u+1)= 6...