设数列{an}为1,2x,3x^2,4x^3,…,nx^(n-1),… (x≠0),求此数列前n项和
问题描述:
设数列{an}为1,2x,3x^2,4x^3,…,nx^(n-1),… (x≠0),求此数列前n项和
答
解1) Sn=1+2x+3x^2+4x^3+...+nx^(n-1) (1)xSn= x+2x^2+3x^3+...+(n-1)x^(n-1)+nx^n (2) (x≠1)(1)-(2)得(1-x)Sn= 1+x+x^2+x^3+...+x^(n-1)-nx^n=x^n-1/(x-1)-nx^nSn=(1-x^n)/(1-x)^2-nx^n/(1-x) (x≠1)2)当x=1时 Sn=...