如图在平行四边形ABCD中,AC交BD于点O,AE⊥BD,CF⊥BD,垂足分别为E、F,求证:四边形AECF为平行四边形.

问题描述:

如图在平行四边形ABCD中,AC交BD于点O,AE⊥BD,CF⊥BD,垂足分别为E、F,求证:四边形AECF为平行四边形.

证明:∵四边形ABCD是平行四边形,
∴AB=CD,AB∥CD,
∴∠ABE=∠CDF,
∵AE⊥BD,CF⊥BD,
∴AE∥CF,∠AEB=∠CFD=90°,
在△AEB和△CFD中,

∠ABE=∠CDF
∠AEB=∠CFD
AB=CD

∴△AEB≌△CFD(AAS),
∴AE=CF,
∴四边形AECF是平行四边形.