已知实数x,y,z满足x2+4y2+9z2=a(a>0),且x+y+z的最大值是7,求a的值.

问题描述:

已知实数x,y,z满足x2+4y2+9z2=a(a>0),且x+y+z的最大值是7,求a的值.

由柯西不等式:[x2+(2y)2+(3z)2][12+(

1
2
)2+(
1
3
)2]≥(x+
1
2
×2y+
1
3
×3z)2

49
36
a≥(x+y+z)2
(a>0),
7
a
6
≤x+y+z≤
7
a
6

∵x+y+z的最大值是7,
7
a
6
=7
,得a=36.
x=
36
7
y=
9
7
z=
4
7
时,x+y+z取最大值,因此a=36.