如图,在等腰梯形ABCD中,AB∥DC,AD=BC=5,DC=7,AB=13,点P从A点出发,以3个单位长度/秒的速度沿AD⇒DC向终点C运动,同时点Q从点B出发,以1个单位长度/秒的速度沿BA向点A运动,当有一点到达终

问题描述:

如图,在等腰梯形ABCD中,AB∥DC,AD=BC=5,DC=7,AB=13,点P从A点出发,以3个单位长度/秒的速度沿AD⇒DC向终点C运动,同时点Q从点B出发,以1个单位长度/秒的速度沿BA向点A运动,当有一点到达终点时,P、Q就同时停止运动.设运动的时间为t秒.
(1)用t的代数式分别表示P、Q运动的路程;
(2)求出梯形ABCD的面积;
(3)当t为多少秒时,四边形PQBC为平行四边形?

(1)P、Q运动的路程分别是3t、t;(2分)(2)过点C作CE∥AD交AB于点E,过点C作CF⊥AB,垂足为F在等腰梯形ABCD中,AB∥DC,AD=BC=5,DC=7,AB=13,又CE∥AD∴四边形AECD为平行四边形∴CE=AD=BC=5,AE=CD=7∴BE=AB-A...