平行四边形ABCD中,M,N分别是AB,CD的中点,AN与DM相交于P,BN与CM相交于Q.请说明PQ与MN互相平分.

问题描述:

平行四边形ABCD中,M,N分别是AB,CD的中点,AN与DM相交于P,BN与CM相交于Q.请说明PQ与MN互相平分.

证明:∵M,N分别为AB,AC中点.
∴AM=CN;又AM∥CN.
∴四边形AMCN是平行四边形,得AN∥MC;
同理可证:四边形BMDN是平行四边形,BN∥MD.
∴四边形PMQN是平行四边形,故PQ与MN互相平分.