已知sin(x/2)-2cos(x/2)=0,求tanx的值,求cos2x除以根号2*cos(π/4+x)*sinx的值

问题描述:

已知sin(x/2)-2cos(x/2)=0,求tanx的值,求cos2x除以根号2*cos(π/4+x)*sinx的值

tanx= 负三分之四

(1)∵sin(x/2)-2cos(x/2)=0
∴sin(x/2)=2cos(x/2)
∴tan(x/2)=2 由 正切二倍角公式:tan2α=2tanα/[1-(tanα)^2]
得tanx=2tan(x/2)/[1-(tanx/2)^2]= -4/3
所以tanx的值为 -4/3
(2)∵Cos2x=(Cosx)^2-(Sinx)^2=(cosx+sinx)(cosx-sinx),
且√2 cos(π/4+x)=cosx+sinx
∴cos2x/[√2 *cos(π/4+x)*sinx]
=(cosx+sinx)(cosx-sinx) /[(cosx+sinx)*sinx]
=(cosx-sinx) /sinx
=1/tanx-1
=-3/4-1= -7/4
所以cos2x/[√2 *cos(π/4+x)*sinx]的值为 -7/4