一动圆与圆X^2+Y^2+6X+5=0外切,同时与圆X^2+Y^2-6X-91=0内切,求动圆圆心的轨迹方程式,并说明它是什...

问题描述:

一动圆与圆X^2+Y^2+6X+5=0外切,同时与圆X^2+Y^2-6X-91=0内切,求动圆圆心的轨迹方程式,并说明它是什...
一动圆与圆X^2+Y^2+6X+5=0外切,同时与圆X^2+Y^2-6X-91=0内切,求动圆圆心的轨迹方程式,并说明它是什么曲线.

设动圆的圆心为O(x,y)
√[(x + 3)^2+ y^2] - 2 = 10 - √[(x - 3)^2+ y^2 ] = 动圆的半径
化简得:3 x^2 + 4 y^2 = 108
即圆心的轨迹方程为椭圆:
x^2 / 36 + y^2 / 27 = 1