证明三点共线

问题描述:

证明三点共线
分别以三角形ABC的两边AB、AC为边向型外作正方形ABDE和ACFG,再以BC为斜边向三角形ABC的同侧作等腰Rt△MBC,求证:D、M、F三点共线.

过D,M,F向BC作垂线
垂足为P,Q,T
则只需证 DP+FQ=2MT=BC
再过A作BC垂线 垂足是H
易知
三角形 DPB≌BHA,AHC≌CQF
所以 DP+FQ=BH+CH=BC