如图、已知∠AOB=30°,OC平分∠AOB,P为OC上任意一点,PD∥OA交OB于D,PE⊥OA于E.如果OD=4cm,求PE的长.

问题描述:

如图、已知∠AOB=30°,OC平分∠AOB,P为OC上任意一点,PD∥OA交OB于D,PE⊥OA于E.如果OD=4cm,求PE的长.

过P作PF⊥OB于F,
∵∠AOB=30°,OC平分∠AOB,
∴∠AOC=∠BOC=15°,
∵PD∥OA,
∴∠DPO=∠AOP=15°,
∴∠BOC=∠DPO,
∴PD=OD=4cm,
∵∠AOB=30°,PD∥OA,
∴∠BDP=30°,
∴在Rt△PDF中,PF=

1
2
PD=2cm,
∵OC为角平分线,PE⊥OA,PF⊥OB,
∴PE=PF,
∴PE=PF=2cm.