已知cosa=-3/5,且a∈(π,3π/2),则tan(a-π/4)=

问题描述:

已知cosa=-3/5,且a∈(π,3π/2),则tan(a-π/4)=

cosa=-3/5
seca=-5/3
tana=√[(seca)^2-1]=4/3
tan(a-π/4)=[tana-tan(π/4)]/[1+tanatan(π/4)]
=3/13

cosa=-3/5,且a∈(π,3π/2),
sina=-4/5
tana=4/3
tan(a-π/4)
=(tana-tanπ/4)/(1+tanatanπ/4)
=(tana-1)/(1+tana)
=(4/3-1)/(1+4/3)
=(1/3)/(7/3)
=1/7