离散数学题.设(S,*)是一个半群,a∈S,在S上 定义一个二元运算□,使得对于S中的任意元素x和y,都有

问题描述:

离散数学题.设(S,*)是一个半群,a∈S,在S上 定义一个二元运算□,使得对于S中的任意元素x和y,都有
x□y=x*a*y
证明二元运算□是可结合的.

(S,*)是半群,则*是可结合的.
对于S中的任意元素x,y,z,(x□y)□z=(x*a*y)□z=(x*a*y)*a*z=x*a*(y*a*z)=x*a*(y□z)=x□(y□z),所以□是可结合的