如图,已知正方形ABCD中,E、F分别是BC、CD上的点,且∠EAF=45°. 求证:(1)EF=BE+DF; (2)SABCDS△EAF=2AB/EF.

问题描述:

如图,已知正方形ABCD中,E、F分别是BC、CD上的点,且∠EAF=45°.
求证:(1)EF=BE+DF;
(2)

SABCD
S△EAF
2AB
EF

证明:(1)延长CB到G,使GB=DF,连接AG(如图)∵AB=AD,∠ABG=∠D=90°,GB=DF,∴△ABG≌△ADF(SAS),∴∠3=∠2,AG=AF,∵∠BAD=90°,∠EAF=45°,∴∠1+∠2=45°,∴∠GAE=∠1+∠3=45°=∠EAF,∵AE=AE,∠G...