△ABC中,BC=a,AC=b,AB=c.若∠C=90°,如图1,根据勾股定理,则a2+b2=c2.若△ABC不是直角三角形,如图2和图3,请你类比勾股定理,试猜想a2+b2与c2的关系,并证明你的结论.

问题描述:

△ABC中,BC=a,AC=b,AB=c.若∠C=90°,如图1,根据勾股定理,则a2+b2=c2.若△ABC不是直角三角形,如图2和图3,请你类比勾股定理,试猜想a2+b2与c2的关系,并证明你的结论.

若△ABC是锐角三角形,则有a2+b2>c2(1分)
若△ABC是钝角三角形,∠C为钝角,则有a2+b2<c2.(2分)
当△ABC是锐角三角形时,
证明:过点A作AD⊥BC,垂足为D,设CD为x,则有BD=a-x(3分)
根据勾股定理,得b2-x2=AD2=c2-(a-x)2
即b2-x2=c2-a2+2ax-x2
∴a2+b2=c2+2ax(5分)
∵a>0,x>0,
∴2ax>0.
∴a2+b2>c2.(6分)
当△ABC是钝角三角形时,
证明:过B作BD⊥AC,交AC的延长线于D.
设CD为y,则有BD2=a2-y2(7分)
根据勾股定理,得(b+y)2+a2-y2=c2
即a2+b2+2by=c2.(9分)
∵b>0,y>0,
∴2by>0,
∴a2+b2<c2.(10分)