设椭圆x^2/a^2+y^2/b^2=1(a〉b〉0)的左、右焦点为F1,F2,点P(a,b)满足PF2=F1F2
问题描述:
设椭圆x^2/a^2+y^2/b^2=1(a〉b〉0)的左、右焦点为F1,F2,点P(a,b)满足PF2=F1F2
答
设点F2(c,0),则F1F2=2c
PF2=2c
(a-c)`2+b`2=4c`2
a`2=b`2+c`2
离心率为c/a=[(√14)-2]/5