阅读材料:若m^2-2mn+2n^2-8n+16=0,求m,n的值.∵m^2-2mn+2n^2-8n+16=0∴(m^2-2mn+n^2)+(n^2-8n+16)=0∴(m-n)^2=0,(n-4)^2=0,∴n=4,m=4
问题描述:
阅读材料:若m^2-2mn+2n^2-8n+16=0,求m,n的值.∵m^2-2mn+2n^2-8n+16=0∴(m^2-2mn+n^2)+(n^2-8n+16)=0∴(m-n)^2=0,(n-4)^2=0,∴n=4,m=4
根据你的观察,探究下面的题目”
(1)已知x^2+2xy+2y^2+2y+1=0,求2X+y的值
(2)已知△ABC的三边长a、b、c都是正整数,且满足a^2+b^2-6a-8b+25=0,求△ABC的最大边c的值
(3)已知a-b=4,ab+c^2-6c+13=0,则a+b+c=____
答
(1)∵x2+2xy+2y2+2y+1=(x2+2xy+y2)+(y2+2y+1)=(x+y)2+(y+1)2=0,
∴x+y=0,且y+1=0,
解得:x=1,y=-1,
则2x+y=2-1=1;
(2)∵a2+b2-6a-8b+25=(a2-6a+9)+(b2-8b+16)=(a-3)2+(b-4)2=0,
∴a-3=0且b-4=0,
解得:a=3,b=4,
∵△ABC的三边长a、b、c都是正整数,
∴△ABC的最大边c的值为5或6;
(3)∵a-b=4,即a=b+4,代入得:(b+4)b+c2-6c+13=0,
整理得:(b2+4b+4)+(c2-6c+9)=(b+2)2+(c-3)2=0,
∴b+2=0,且c-3=0,即b=-2,c=3,a=2,
则a+b+c=2-2+3=3.
故答案为:3