如图所示,在平行四边形ABCD中,E、F分别是AD、BC的中点,AF与BE相交于点G,DF与EC相交于H,连接EF GH
问题描述:
如图所示,在平行四边形ABCD中,E、F分别是AD、BC的中点,AF与BE相交于点G,DF与EC相交于H,连接EF GH
如图所示,在平行四边形ABCD中,E、F分别是AD、BC的中点,AF与BE相交于点G,DF与EC相交于H,连接EF GH 试问EF与GH是否互相平分?为什么?快啊,用初二所学的知识证
答
因为,E、F分别是AD、BC的中点,AD平行BC,AD=BC,所以AE平行FC且AE=FC,所以四边形AFCE是平行四边形,所以AF平行EC,即FG平行HE,同样道理EG平行FH,所以四边形EGFH是平行四边形,所以EF和GH平分(平行四边形的对角线互相平分).