已知函数f(x)=ax^2-(a+2)x+lnx (1)当a>0时,函数f(x)在区间[1,e]上的最小值为-2,求a的范围
问题描述:
已知函数f(x)=ax^2-(a+2)x+lnx (1)当a>0时,函数f(x)在区间[1,e]上的最小值为-2,求a的范围
(2)若对任意x1、x2∈(0,+∞),x1<x2,且f(x1)+2x1<f(x2)+2x2恒成立,求a范围
答
f(x)=ax^2-(a+2)x+lnx (x>0),
f'(x)=2ax-(a+2)+1/x
=[2ax^2-(a+2)x+1]/x,
=2a(x-1/2)(x-1/a)/x,
02时1/a1时1/a0,
2ax^2-ax+1>0,②
a=0时②成立;
a0时a^2-8a