设数列的前n项和为Sn,已知a1=1,an+1=(n+2/n)*Sn,(n=1,2,3,...) 1,求证Sn/n是等比数列 2,Sn+1=4an

问题描述:

设数列的前n项和为Sn,已知a1=1,an+1=(n+2/n)*Sn,(n=1,2,3,...) 1,求证Sn/n是等比数列 2,Sn+1=4an

S(n+1)-Sn=a(n+1)=[(n+2)/n]Sn
S(n+1)=[(n+2)/n]Sn+Sn=[2(n+1)/n]Sn=2(n+1)×[Sn/n],所以,
[S(n+1)/(n+1)]:[Sn/n]=2=常数.即数列{Sn/n}是等比数列,公比为q=2,首项为S1/1=a1=1,所以Sn/n=1×2^(n-1),从而Sn=n×2^(n-1).