已知数列{an}是公差不为零的等差数列,其前n项和为Sn,且S5=30,又a1,a3,a9成等比数列.(Ⅰ)求Sn;(Ⅱ)若对任意n>t,n∈N•,都有1/S1+a1+2+1/S2+a2+2+…+1/Sn+an+2>12/25,求t的最小值
问题描述:
已知数列{an}是公差不为零的等差数列,其前n项和为Sn,且S5=30,又a1,a3,a9成等比数列.
(Ⅰ)求Sn;
(Ⅱ)若对任意n>t,n∈N•,都有
+1
S1+a1+2
+…+1
S2+a2+2
>1
Sn+an+2
,求t的最小值.12 25
答
(Ⅰ)设公差为d,由条件得5a1+5×42d=30(a1+2d)2=a1(a1+8d),得a1=d=2.∴an=2n,Sn=2n+n(n-1)×22=n2+n;(Ⅱ)∵1Sn+an+2=1n2+n+2n+2=1n2+3n+2=1(n+1)(n+2)=1n+1-1n+2.∴1S1+a1+2+1S2+a2+2+…+1Sn+an+2=(12-13)+...