已知等比数列{an}中,a1=1/3,公比q=1/3.(Ⅰ)Sn为{an}的前n项和,证明:Sn=1-an2(Ⅱ)设bn=log3a1+log3a2+…+log3an,求数列{bn}的通项公式.
问题描述:
已知等比数列{an}中,a1=
,公比q=1 3
.1 3
(Ⅰ)Sn为{an}的前n项和,证明:Sn=
1-an
2
(Ⅱ)设bn=log3a1+log3a2+…+log3an,求数列{bn}的通项公式.
答
证明:(I)∵数列{an}为等比数列,a1=
,q=1 3
1 3
∴an=
×(1 3
)n-1=1 3
,1 3n
Sn=
=
(1- 1 3
)1 3n 1-
1 3
1-
1 3n 2
又∵
=1-an
2
=Sn1-
1 3n 2
∴Sn=
1-an
2
(II)∵an=
1 3n
∴bn=log3a1+log3a2+…+log3an=-log33+(-2log33)+…+(-nlog33)
=-(1+2+…+n)
=-
n(n+1) 2
∴数列{bn}的通项公式为:bn=-
n(n+1) 2