已知等比数列{an}中,a1=1/3,公比q=1/3.(Ⅰ)Sn为{an}的前n项和,证明:Sn=1-an2(Ⅱ)设bn=log3a1+log3a2+…+log3an,求数列{bn}的通项公式.

问题描述:

已知等比数列{an}中,a1=

1
3
,公比q=
1
3

(Ⅰ)Sn为{an}的前n项和,证明:Sn=
1-an
2

(Ⅱ)设bn=log3a1+log3a2+…+log3an,求数列{bn}的通项公式.

证明:(I)∵数列{an}为等比数列,a1=

1
3
,q=
1
3

∴an=
1
3
×(
1
3
)
n-1
=
1
3n

Sn=
1
3
(1- 
1
3n
)
1-
1
3
=
1-
1
3n
2

又∵
1-an
2
=
1-
1
3n
2
=Sn
∴Sn=
1-an
2

(II)∵an=
1
3n

∴bn=log3a1+log3a2+…+log3an=-log33+(-2log33)+…+(-nlog33)
=-(1+2+…+n)
=-
n(n+1)
2

∴数列{bn}的通项公式为:bn=-
n(n+1)
2