已知二次函数y=-x2+bx+c的图象如图所示,它与x轴的一个交点A的坐标为(-1,0),另一个交点为B,顶点是D,与y轴的交点C的坐标为(0,3). (1)求出b,c的值,并写出此二次函数的解析式;

问题描述:

已知二次函数y=-x2+bx+c的图象如图所示,它与x轴的一个交点A的坐标为(-1,0),另一个交点为B,顶点是D,与y轴的交点C的坐标为(0,3).

(1)求出b,c的值,并写出此二次函数的解析式;
(2)根据图象,写出函数值y为正数时,自变量x的取值范围;
(3)连结AD,BD,求△ABD的面积.

(1)将A(-1,0)与C(0,3)代入二次解析式得:

−1−b+c=0
c=3

解得:
b=2
c=3

则二次函数解析式为y=-x2+2x+3;
(2)令y=0,得到-x2+2x+3=0,即(x-3)(x+1)=0,
可得x-3=0或x+1=0,
解得:x=3,或x=-1,
∴A(-1,0),B(3,0),
根据图象得:函数值y为正数时,自变量x的取值范围为-1<x<3;
(3)对于y=-x2+2x+3=-(x-1)2+4,得到顶点D(1,4),
则S△ABD=
1
2
AB•D纵坐标=
1
2
×4×4=8.