用二项式定理证明: (1)2n+2•3n+5n-4(n∈N*)能被25整除; (2)(2/3)n-1<2/n+1(n∈N*,且n≥3).

问题描述:

用二项式定理证明:
(1)2n+2•3n+5n-4(n∈N*)能被25整除;
(2)(

2
3
n-1
2
n+1
(n∈N*,且n≥3).

(1)2n+2•3n+5n-4=4×6n+5n-4=4×(1+5)n+5n-4 
=4×[1+

C 1n
×5+
C 2n
×52+…+
C 5n
×5n]+5n-4=25n+
C 2n
×52+…+
C 5n
×5n],显然能被25整除.
(2)∵(
3
2
)
n−1
=(1+
1
2
)
n−1
=1+(n-1)×
1
2
+
C 2n−1
×(
1
2
)
2
+…+(
1
2
)
n−1
>1+(n-1)×
1
2
=
n+1
2

∴(
2
3
n-1
2
n+1
(n∈N*,且n≥3).