用二项式定理证明: (1)2n+2•3n+5n-4(n∈N*)能被25整除; (2)(2/3)n-1<2/n+1(n∈N*,且n≥3).
问题描述:
用二项式定理证明:
(1)2n+2•3n+5n-4(n∈N*)能被25整除;
(2)(
)n-1<2 3
(n∈N*,且n≥3). 2 n+1
答
(1)2n+2•3n+5n-4=4×6n+5n-4=4×(1+5)n+5n-4
=4×[1+
×5+
C
1n
×52+…+
C
2n
×5n]+5n-4=25n+
C
5n
×52+…+
C
2n
×5n],显然能被25整除.
C
5n
(2)∵(
)n−1=(1+3 2
)n−1=1+(n-1)×1 2
+1 2
×(
C
2n−1
)2+…+(1 2
)n−1>1+(n-1)×1 2
=1 2
,n+1 2
∴(
)n-1<2 3
(n∈N*,且n≥3).2 n+1