点O为△ABC的内切圆圆心,a b c 为∠A ∠B∠C 所对边的长度,求证aOA+bOB+cOC=0(OA OB OC和0是向量)

问题描述:

点O为△ABC的内切圆圆心,a b c 为∠A ∠B∠C 所对边的长度,求证aOA+bOB+cOC=0(OA OB OC和0是向量)

证明:
a=OB-OC
b=OC-OA
c=OA-OB
则a*OA+b*OB+c*OC=(OB-OC)*OA+(OC-OA)*OB+(OA-OB)*OC
展开即可得证!
说明 以上均为向量,*为点乘不是X乘