已知函数f(x)=x3+ax2+bx+c,x∈[-2,2]表示的曲线过原点,且在x=±1处的切线斜率均为-1,有以下命题: ①f(x)的解析式为:f(x)=x3-4x,x∈[-2,2]; ②f(x)的极值点有且仅有一个; ③f(x
问题描述:
已知函数f(x)=x3+ax2+bx+c,x∈[-2,2]表示的曲线过原点,且在x=±1处的切线斜率均为-1,有以下命题:
①f(x)的解析式为:f(x)=x3-4x,x∈[-2,2]; ②f(x)的极值点有且仅有一个; ③f(x)的最大值与最小值之和等于零,则下列选项正确的是( )
A. ①②
B. ①③
C. ②③
D. ①②③
答
∵函数f(x)=x3+ax2+bx+c,x∈[-2,2]表示的曲线过原点,∴c=0
对函数f(x)求导,得,f′(x)=3x2+2ax+b,
∵在x=±1处的切线斜率均为-1,∴f′(1)=1,f′(-1)=1,
即,3+2a+b=-1,3-2a+b=-1
解得a=0,b=-4
∴(x)=x3-4x,x∈[-2,2],①正确.
f′(x)=3x2-4,令f′(x)=0,得,x=±
,∴f(x)的极值点有两个,②错误2
3
3
f(-2)=0,f(-
)=2
3
3
,f(16
3
6
)=-2
3
3
,f(2)=016
3
6
∴f(x)的最大值为
,最小值为-16
3
6
,最大值与最小值之和等于零.③正确.16
3
6
故选B