对于A=2 -1 -1 -1 2 -1 -1 -1 2 求出可逆矩阵P使得P^-1AP为对角矩阵Q,并写出对角矩阵Q.A=2 -1 -1-1 2 -1-1 -1 2
问题描述:
对于A=2 -1 -1 -1 2 -1 -1 -1 2 求出可逆矩阵P使得P^-1AP为对角矩阵Q,并写出对角矩阵Q.
A=2 -1 -1
-1 2 -1
-1 -1 2
答
步骤:1、求特征值;2、带入特征值求特征向量;3、分别对特征向量正交化、单位化;4、处理后的特征向量组成可逆矩阵P;5、对角元素为特征值的对角矩阵即为所求Q.
你自己按步骤来做,这比我给答案你更好,不懂可追问.