如图,在RT△ABC中,∠C=90°,BC=9,CA=12,∠ABC的平分线BD交AC于点D,DE⊥DB交AB于点E.设圆O交BC于点F
问题描述:
如图,在RT△ABC中,∠C=90°,BC=9,CA=12,∠ABC的平分线BD交AC于点D,DE⊥DB交AB于点E.设圆O交BC于点F
连接EF,求EF/AC的值
答
连结OD,OB=OD=R,〈ODB=〈OBD,BD是〈ABC的平分线,〈OBD=〈DBC,〈DBC=〈ODB,∴OD‖BC,〈ACB=90°,〈ODA=90°,OD是圆半径,∴AC是是圆O的切线.根据勾股定理,AB^2=AC^2+BC^2,AB=15,设AD=x,BD是〈ABC的平分线,则BC/AB=CD/A...