曲线y=x3+x+1在点(1,3)处的切线方程是(  ) A.4x-y-1=0 B.4x+y-1=0 C.4x-y+1=0 D.4x+y+1=0

问题描述:

曲线y=x3+x+1在点(1,3)处的切线方程是(  )
A. 4x-y-1=0
B. 4x+y-1=0
C. 4x-y+1=0
D. 4x+y+1=0

∵y=x3+x+1,
∴y′=3x2+1
令x=1得切线斜率4,
∴切线方程为y-3=4(x-1),
即4x-y-1=0
故选A.