设A,B是两个n阶正交矩阵,且AB的行列式为-1.证明:A+B的行列式为0

问题描述:

设A,B是两个n阶正交矩阵,且AB的行列式为-1.证明:A+B的行列式为0

以A'表示A的转置所以A'A=AA'=E,B'B=BB'=E有|A'(A+B)B'|= |(A'A+A'B)B'|=|(E+A'B)B'|=|B'+A'|=|A+B|同时|A'(A+B)B'|= |A'||A+B||B'|=|A+B||A||B|=-|A+B|所以|A+B|=-|A+B||A+B|=0