设A为n阶行列式,B是A经过若干次矩阵的初等变换后得到的矩阵,则有 (A)若|A|>0,则一定有|B|>0

问题描述:

设A为n阶行列式,B是A经过若干次矩阵的初等变换后得到的矩阵,则有 (A)若|A|>0,则一定有|B|>0
(B)|A|=|B| (C)若 |A|=0,则一定有|B|=0 (D)|A|不等于|B|

知识点:n阶方阵A经初等变换化为B,则存在非零数k 使得 |A| = k|B|.
所以 (C) 正确.