已知数列{an}前n项和Sn=n^2+n,令bn=1/anan+1,求数列{bn}的前n项和Tn
问题描述:
已知数列{an}前n项和Sn=n^2+n,令bn=1/anan+1,求数列{bn}的前n项和Tn
答
n=1,S1=a1=2 , n>1 ,an=Sn-S(n-1)=2n, n=1时也适合,故:an=2n bn=(1/4)·1/n(n+1) 4bn=1/n(n+1) =1/n-1/(n+1),所以: 4Tn=[(1-1/2)+(1/2-1/3)+···+(1/n-1/(n+1))]=1-1/(n+1)=n/(n...