已知W=Z+i(z 属于c) 且 z-2/z+2为纯虚数求M=/w+1/^2+/w-1/^2的最大值及当M去最大值是的W

问题描述:

已知W=Z+i(z 属于c) 且 z-2/z+2为纯虚数求M=/w+1/^2+/w-1/^2的最大值及当M去最大值是的W

设2在复平面上对应的点是A,-2对应B,z对应Z点
那么z-2/z+2是纯虚数的充要条件是角AZB是直角(z-2与z+2的辐角之差)
那么z就在以AB为直径的圆上,也就是|z|=2,那么|w-i|=2
M=|w+1|^2+|w-1|^2=(w+1)(w的共轭+1)+(w-1)(w的共轭-1)=2(|w|^2+1)
|w|表示的是W点到原点的距离,又W的轨迹是以i为中心,2为半径的圆,它到原点的最大距离是3
也就是|w|最大值是3,那么M最大值是20,此时w=3i