已知tanα=2,求sin(π/4+α)/cos(π/4+α)·tan2α的值
问题描述:
已知tanα=2,求sin(π/4+α)/cos(π/4+α)·tan2α的值
答
tan2a=[2tana]/[1-tan²a]=-4/3sin(π/4+a)/cos(π/4+a)=[sin(π/4)cosa+cos(π/4)sina]/[cos(π/4)cosa-sin(π/4)sina]=[cosa+sina]/[cosa-sina]=[1+tana]/[1-tana]=-3则:原式=[-3]/[-4/3]=9/4...化简:sin2α/sin(π+α)+cos2α+1/cosα已知tanα=2,求sin(π/4+α)/cos(π/4+α)·tan2α的值求值:sin^2α+cos^2(π/6+α)+1/2sin(2α+π/6)1、=[2sinacosa/sina]+(2cos²a-1+1)/cosa=(2cosa)+(2cosa)=4cosa 2、解决了。 3、=-(1/2)(1-cos2a)+(1/2)[cos(π/3+2a)]+(1/2)sin(2a+π/6) =-(1/2)+(1/2)cos2a+(1/2)[(1/2)cos2a-(√3/2)sin2a]+(1/2)[(√3/2)sin2a+(1/2)cos2a] =cos2a-(1/2)