已知cosα=1/7,cos(α-β)=13/14,且0<β<α<π/2,①求tanα的值 ②求cosβ
问题描述:
已知cosα=1/7,cos(α-β)=13/14,且0<β<α<π/2,①求tanα的值 ②求cosβ
答
(1) cosα = 1/7,因为0< α<π/2 ,
所以sinα = √(1-cos²α) = √[1-(1/7)²] = 4 √ 3 / 7
所以tanα = sinα / cosα = 4 √ 3
(2) cos(α-β)=13/14,因为 -π/2 < α -β <π/2,
所以sin(α-β) = √ [1-(cos²(α-β)] = √ [1-(13/14)²] = 3√3 /14
根据两角差的余弦公式:
cos[α - (α-β)] = cosαcos(α-β) + sinαsin(α-β)
cosβ = (1/7) * (13/14) + (4 √ 3 / 7) * (3√3 /14)
= 1/2