已知二次函数y=ax2+bx+c(其中a是正整数)的图象经过点A(-1,4)与点B(2,1),并且与x轴有两个不同的交点,则b+c的最大值为_.
问题描述:
已知二次函数y=ax2+bx+c(其中a是正整数)的图象经过点A(-1,4)与点B(2,1),并且与x轴有两个不同的交点,则b+c的最大值为______.
答
由于二次函数的图象过点A(-1,4),点B(2,1),所以a−b+c=44a+2b+c=1,解得b=−a−1c=3−2a.因为二次函数图象与x轴有两个不同的交点,所以△=b2-4ac>0,(-a-1)2-4a(3-2a)>0,即(9a-1)(a-1)>0,由...