如图,矩形ABCD中,AB=2,BC=3,对角线AC的垂直平分线分别交AD,BC于点E、F,连接CE,则CE的长为_.
问题描述:
如图,矩形ABCD中,AB=2,BC=3,对角线AC的垂直平分线分别交AD,BC于点E、F,连接CE,则CE的长为______.
答
EF垂直且平分AC,故AE=EC,AO=CO.
所以△AOE≌△COE.
设CE为x.
则DE=AD-x,CD=AB=2.
根据勾股定理可得x2=(3-x)2+22
解得CE=
.13 6
故答案为
.13 6