在三角形ABC中,若sin^2A=sin^2B+sin^2C+sinBsinC,求A的值
问题描述:
在三角形ABC中,若sin^2A=sin^2B+sin^2C+sinBsinC,求A的值
答
sinA / a=sinB / b=sinC / c=m; m>0.
sin^2A=sin^2B+sin^2C+sinBsinC,
(am)^2=(bm)^2+(cm)^2+(bm)(cm),
a^2=b^2+c^+bc=b^2+c^-2cosA * (bc);
cosA=-1/2;
A=120