等差数列{a_n}中,公差d≠0,a1 ,a3,a9成等比数列,则(a1+a3+a9)/(a2+a4+a10 )=_________

问题描述:

等差数列{a_n}中,公差d≠0,a1 ,a3,a9成等比数列,则(a1+a3+a9)/(a2+a4+a10 )=_________

(a1+2d)/a=(a+8d)/(a+2d)得a1=d,an=n*d
(a1+a3+a9)/(a2+a4+a10)=13/16