如图,点I是△ABC的内心,AI交BC边于D,交△ABC的外接圆于点E. 求证:(1)IE=BE; (2)IE是AE和DE的比例中项.

问题描述:

如图,点I是△ABC的内心,AI交BC边于D,交△ABC的外接圆于点E.
求证:(1)IE=BE;
      (2)IE是AE和DE的比例中项.

证明:(1)连接BI,
∵I是△ABC的内心,
∴∠1=∠2,∠3=∠4,
∵∠BIE=∠1+∠3,
∠IBE=∠5+∠4,
而∠5=∠1=∠2,
∴∠BIE=∠IBE,
∴IE=BE.
(2)根据(1)可得:
∵∠2=∠1=∠5,∠E=∠E,
∴△AEB∽△BED,

AE
BE
=
BE
DE

∵BE=IE,
AE
IE
=
IE
DE

∴IE是AE和DE的比例中项.