为什么如果f(x+T)=-f(x),则2T是函数f(x)的一个周期呢?

问题描述:

为什么如果f(x+T)=-f(x),则2T是函数f(x)的一个周期呢?

∵f(x+T)=-f(x),∴-f(x+T)=f(x)
然后你用x+T代替原来的x
带进去得到f(x+T+T)=-f(x+T)
上面已经知道-f(x+T)=f(x)
∴f(x+T+T)=f(x)
所以2T是一个周期